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Abstract

Recent work has suggested that tropical cyclones intensify via a pathway of rotating
deep moist convection in the presence of enhanced fluxes of moisture from the ocean.
The rotating deep convective structures possessing enhanced cyclonic vorticity within
their cores have been dubbed Vortical Hot Towers (VHTs). In general, the interaction5

between VHTs and the system-scale vortex, as well as the corresponding evolution
of equivalent potential temperature θe that modulates the VHT activity, is a complex
problem in moist helical turbulence.

To better understand the structural aspects of the three-dimensional intensification
process, a Lagrangian perspective is explored that focuses on the localized stirring10

around VHTs and their vortical remnants, as well as the evolution and stirring of θe. Re-
cently developed finite-time Lagrangian methods are limited in the three-dimensional
turbulence and shear associated with the VHTs. In this paper, new Lagrangian tech-
niques developed for three-dimensional velocity fields are summarized and we apply
these techniques to study VHT and θe phenomenology.15

Our primary findings are that VHTs are coherent Lagrangian vortices that create
a turbulent mixing environment. Associated with the VHTs are hyperbolic structures
that modulate the aggregation of VHTs and their vortical remnants. Although the
azimuthally-averaged inflow is responsible for the inward advection of boundary layer
θe, the Lagrangian coherent structures are found to modulate the convection emanat-20

ing from the boundary layer by stirring θe along organized attracting boundaries. Ex-
tensions of boundary layer coherent structures grow above the boundary layer during
episodes of convection are responsible for organizing the remnants of the convective
vortices. These hyperbolic structures form initially as boundaries between VHTs, but
persist above the boundary layer and outlive the VHTs to eventually form the primary25

eyewall as the vortex attains maturity.
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1 Introduction

1.1 The turbulent intensification problem

1.1.1 VHT definition and their local dynamics

Observations show that tropical cyclones are highly asymmetric during their intensi-
fication phase. Once mature, only the most intense storms exhibit a strong degree5

of axial symmetry and even then, only in their inner-core region. Observations show
also that intensifying storms are accompanied by bursts of convection, which one may
surmise possess significant local buoyancy. When buoyant convection occurs in an
environment of non-zero vertical vorticity, updrafts will amplify the vorticity by the pro-
cess of vortex-tube stretching. There is growing evidence that convective bursts in10

pre-depression disturbances and tropical depression-strength storms do generate lo-
calized cyclonic vorticity anomalies in the lower troposphere whose magnitude exceeds
that of the local environment by 1–2 orders of magnitude (Reasor et al., 2005; Sippel et
al., 2006; Bell and Montgomery, 2010; Raymond and Lopez-Carrillo, 2010). The vor-
tical convective structures that contribute to the stretching of cyclonic vertical vorticity15

in the low- to mid-troposphere will be hereafter referred to as vortical hot towers (or
VHTs) (Hendricks et al., 2004; Dunkerton et al., 2009). Observations and numerical
modeling studies suggest that VHTs typically have convective lifetimes on the order of
1 hour. Though the lifetime of VHTs is short, the amplified vorticity left behind may last
much longer and contribute to the aggregation and upscale growth of the emerging20

cyclonic hurricane.
VHTs are a manifestation of convective instability, generated by moisture fluxes at

the air-sea interface, in a rotating environment. Moisture fluxes enhance the moist
entropy of the boundary layer above ambient values in the absence of convective- or
meso-scale downdrafts, which import low moist entropy from aloft into the boundary25

layer. The local buoyancy required to support the VHTs is provided by the latent heat
of condensation for moist air parcels originating in the atmospheric boundary layer.

3
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It is only when a boundary layer parcel is lifted vertically (while conserving its moist
entropy) to the so-called “level of free convection,” that the parcel will acquire positive
buoyancy to accelerate the updraft vertically and stretch vertical vortex tubes. The
vertical buoyancy force per unit mass is proportional to the difference between the
parcel’s virtual temperature and that of its immediate environment. For convenience,5

the entropy of moist air is often expressed using the variable of equivalent potential
temperature (θe) (Holton, 2004)1.

The horizontal length scale of VHTs is on the order of 10 km and is thought to be
associated with a (nonlinear) convective plume scale (Siggia, 1994), in contrast to the
most unstable horizontal length scale (1 km or less) that arises in a linearized stabil-10

ity analysis of the moist tropical atmosphere (Lilly, 1960; Emanuel et al., 1994). As
discussed in the foregoing paragraph, VHTs feed on heightened θe in the boundary
layer. Because of their vortical properties, VHTs contribute to the stirring of θe anoma-
lies in the boundary layer through high strain. The precipitation-driven downdrafts that
accompany the VHTs in sub-saturated air import low θe from the middle troposphere15

into the boundary layer. Both of these processes create an environment less favorable
for future convective episodes until the boundary layer θe recovers through the air-sea
interaction process to a sufficient degree (Nguyen et al., 2010). The spatial distribution
of boundary layer θe is therefore an integral component of the VHT dynamics and the
spin-up of the system-scale circulation.20

1For reference, the connection between the moist entropy (s) and θe is s=cp ln(θe), where
cp is the specific heat of dry air at constant pressure. For moist-saturated conditions, θe is

adequately approximated by the quantity θexp(qLv/cpT ) where θ = T (p0/p)(R/cp) is the “dry”
potential temperature, T is thermodynamic temperature, q is the mixing ratio of moist air (ex-
pressed in grams of water vapor per kilogram of dry air), p is air pressure, p0 is a reference
air pressure (1000 mb), R is the (ideal) gas constant for dry air and Lv is the latent heat of
condensation. A more precise representation of θe for non-saturated and saturated conditions
that includes the virtual temperature effect is given by Bolton (1980) and the Bolton formulation
is employed for all θe calculations herein.

4
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1.1.2 Role of VHTs in the spin up of the mean circulation

The role of VHTs in the intensification of the larger-scale vortex circulation has been
the subject of recent numerical and theoretical investigations, (Hendricks et al., 2004;
Montgomery et al., 2006; Nguyen et al., 2008; Shin and Smith, 2008; Nguyen et al.,
2010; Montgomery et al., 2010; Fang and Zhang, 2010; Levina and Montgomery,5

2010). From a mean-field viewpoint associated with an azimuthal average around
the system center of circulation, VHTs have been implicated in two mechanisms for
spinning up the mean vortex (Smith et al., 2009; Montgomery and Smith, 2011):

– The first mechanism is associated with the radial convergence of absolute angular
momentum above the boundary layer in conjunction with its conservation 2. The10

convergence of absolute angular momentum is produced by a system-scale radial
gradient of a positive heating rate associated with the VHTs in the presence of en-
hanced surface moisture fluxes from the underlying ocean3. This mechanism has
been articulated previously by many authors (e.g., Willoughby (1979); Schubert
and Hack (1982)). It explains why the vortex expands in size (Smith et al., 2009)15

and may be interpreted in terms of balance dynamics (Bui et al., 2009), wherein
2The absolute angular momentum, M = rv +1/2f r2, is the sum of the planetary angular

momentum taken about the storm’s rotation axis and the relative angular momentum of the
storm’s tangential circulation. Here, r denotes radius from the system circulation center, f
denotes the Coriolis parameter (2Ωsin(φ), where φ is latitude) and v denotes the azimuthally-
averaged tangential velocity field, defined relative to the system center.

3The heating rate refers to the material derivative of the dry potential temperature, θ, defined
in the previous footnote (see also Holton, 2004). Unlike the moist thermodynamic viewpoint
discussed in the foregoing subsection in which moist air parcels lifted from the boundary layer
rise along moist-adiabats materially conserving their moist entropy (and θe), in the alternative
dry-thermodynamic viewpoint the latent heat that is liberated during the condensation process
appears as a forcing term in the thermodynamical equation for θ. These two descriptions are
complementary.

5
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the azimuthal mean flow is well approximated by gradient wind and hydrostatic
balance 4.

– The second mechanism is associated with radial convergence of absolute angu-
lar momentum within the boundary layer and becomes important in the inner-core
region of the developing storm. Although absolute angular momentum is not ma-5

terially conserved in the boundary layer, large wind speeds can be achieved if the
radial inflow is sufficiently large to bring the air parcels to small radii with mini-
mal loss of angular momentum. While coupled to the interior flow via the radial
pressure gradient at the top of the boundary layer, and still requiring convectively-
induced inflow above the boundary layer to increase the radial pressure gradient10

there, this spin-up pathway is tied to the dynamics of the boundary layer where the
flow is not in gradient wind balance over a substantial radial span (Montgomery
and Smith, 2011).

1.1.3 Motivation of this study

The two-stage model of tropical cyclone intensification proposed by Smith et al. (2009)15

is thus one that incorporates both the dynamics and thermodynamics of VHTs and
their collective effects. In general, the interaction between VHTs and the system-scale
vortex, as well as the corresponding evolution of θe, is a complex problem in moist
helical turbulence 5 (Levina and Montgomery, 2010). To better understand the struc-
tural aspects of the intensification process, a Lagrangian perspective is adopted here20

for studying the localized stirring around VHTs and their vortical remnants, as well as
the evolution and stirring of θe. One of the goals of this study is to understand further
the system-scale implications of stirring and mixing processes near VHTs and their
respective mergers.

4See Chapter 3 of Holton (2004) for a definition of gradient and hydrostatic balance.
5Helicity is the scalar product between the vorticity and velocity vector fields.

6
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Another property of the new model is the stochastic nature in the development and
interaction of the VHTs, due to the turbulent nature of the flow. Recalling the rule that
the predictability time generally scales with the eddy turnover time of the energy con-
taining eddies, it would seem that meaningful forecasts of the lifecycle of an individual
VHT (i.e., formation, growth, merger with neighboring VHTs, and decay) are futile be-5

yond a one hour time scale. Therefore, information about the aggregate contribution
of the stochastic turbulent structures would be expected to be obtained by eddy stat-
ictics (Weiss and Provenzale, 2008). On the other hand, it is well known that flow
boundaries tend to be persistent, even in time-dependent flows, and knowledge of the
location of these boundaries within a highly time-dependent flow may improve the lo-10

calized predictability of the turbulent mixing processes. A second goal of this study is
to examine the localized effects of persistent Lagrangian boundaries associated with
the VHTs which protect and aggregate regions of vorticity and protect the enhanced
θe anomalies that support VHTs.

1.2 Organization within the turbulence15

Persistent boundaries allow a simplified viewpoint of organized transport, and in steady
or weakly time-dependent flows are formed by the stable and unstable manifolds of a
trajectory with saddle-type stability, see Ide et al. (2002); Malhotra and Wiggins (1999).
Flow boundaries for time-dependent flows still share a relationship to the saddle-point
geometry for steady flows as they are finite-time manifolds, but the boundaries exist20

only for finite times, and are limited to finite lengths. Though the flow near VHTs is
turbulent, some flow boundaries near VHTs have lifetimes greater than that of the VHT,
and provide pathways for stirring of vorticity. Since the boundaries can be visualized
in a reference frame moving approximately at the speed of the Lagrangian boundary
through the time-dependent flow, these finite-time flow boundaries represent a type of25

Lagrangian coherent structure (LCS).

7
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1.2.1 LCS definition

Lagrangian coherent structures are generally defined as structures which maintain
some particular property when advected by the flow. While the Lagrangian reference
frame in most meteorological applications follows a coherent feature, the dynamical
systems community has recently used the term Lagrangian for following particle tra-5

jectories in order to provide a more generalized frame independent view of transport
in time-dependent flows (Wiggins, 2005; Haller and Yuan, 2000). Shadden (2006), of-
fers a definition of LCSs commonly accepted in the dynamical systems community as
“ridges 6 of a Lagrangian scalar field.” While VHTs are LCSs in the sense of the me-
teorological definition, their Lagrangian properties in the sense of the latter definition10

have not been studied extensively. To avoid confusion, the use of the term LCS will
refer hereafter to a ridge of a Lagrangian scalar field, and will not be used to refer to a
VHT.

Of particular interest for studying mixing are those LCSs which serve as the finite-
time analogs of stable and unstable manifolds. Forward time integration yields repelling15

LCSs while backward time integration yields attracting LCSs, which are the finite-time
analogs to stable and unstable manifolds, respectively. Attracting LCSs attract and
then stretch a tracer blob, while repelling LCSs split a tracer blob that initially straddles
the LCS (Haller and Yuan, 2000).

Table 1. Summary of the kinematic characteristics of LCSs.

manifold LCS integration time effect on tracers

unstable attracting backward stretching

stable repelling forward splitting

6Ridges of a scalar field are curves which are locally maximal and the orientation of the
curve is everywhere orthogonal to the gradient of the scalar field.

8
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1.2.2 Finite-time Lagrangian methods

Locating LCSs in 3-D time-dependent flows is challenging, but is aided by a new class
of techniques that have been developed in the past decade. The methods from dy-
namical systems theory allow for the detection of LCSs in flows with general time-
dependence. Haller and coauthors (Haller and Poje, 1997; Haller and Yuan, 2000;5

Haller, 2000) proposed finite-time Lyapunov exponents (FTLE’s) as a method for mea-
suring trajectory separation, and defined LCSs as maximal ridges of FTLE fields. The
method of FTLE’s was shown to be robust under approximation errors of the velocity
fields (Haller, 2002), and has been applied to a variety of fluid flows. Applications to
atmospheric flows have been more limited, though several studies have ventured into10

this area. In Sapsis and Haller (2009), Rutherford et al. (2010b), and Rutherford et
al. (2010a), FTLE’s have been applied to tropical cyclones, and in Tang et al. (2010),
FTLE’s are used in a study of the subtropical jetstream.

Though FTLE’s easily locate LCSs in time-dependent flows, they do not differentiate
between hyperbolicity and shear effectively, and therefore would appear to have limited15

usefulness in flows with strong shear, such as the inner core region of an intensifying
tropical cyclone. A method of separating hyperbolicity from shear was proposed by
Haller and Iacono (2003), and was applied by Rutherford et al. (2010b) to detect LCSs
in the presence of large-scale shear. The LCSs found were not manifolds, since they
move with the dominant vortex Rossby wave structure, a propogating feature that is20

not simply the result of advection by the flow, but were shown to be robust across time,
and were shown to influence the systematic radial transport of fluid particles within the
evolving vortex.

The method of separating shear in two-dimensional flows was extended to 3-D
in Rutherford and Dangelmayr (2010). The method was used to compute the La-25

grangian boundary separating the eye and eyewall during a mature TC simulation.
That study introduced a new view on 3-D flow separation by decomposing the growth

9
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of material elements into several hyperbolic and shear components. Additionally, the
hyperbolic fields converged faster than FTLE’s and the field associated closely with the
horizontal plane eliminated the need for rescaling vertical motions due to the small ver-
tical:horizontal aspect ratio that typifies a tropical cyclone vortex. A specific choice of
coordinates adapted to the helical trajectory motion made the approach of Rutherford5

and Dangelmayr (2010) more computationally efficient. Whereas the VHT interaction
is clearly more complex than the evolution of a single mature hurricane vortex, the co-
ordinate system proposed by Rutherford and Dangelmayr (2010) nonetheless resolves
LCSs under shorter time-scales. We note that other studies (Truesdell, 1954; Saffman,
1981; Provenzale, 1999; Prieto et al., 2003; Shadden et al., 2006) have investigated the10

interaction between and entrainment of particles by vortices using different methods.
In this study, we apply the methods of Rutherford and Dangelmayr (2010) to a 3-D

intensifying tropical cyclone, and examine the LCSs associated with VHTs. We show
that while the VHTs are themselves a type of LCS, vertically coherent hyperbolic LCSs
separating the VHTs are shown to control the organization of VHTs and their vortical15

remnants, and would thus appear to be important elements of the three-dimensional
intensification process. Moreover, the hyperbolic LCSs cannot be isolated by the field
of FTLE’s even when only considering the two-dimensional flow. Our study shows also
that the length of the hyperbolic LCSs is an important factor in VHT interaction, as the
VHTs interact when the LCSs are long enough to span between them. The structures20

we find are long enough to span multiple VHTs, and may contribute to the upscale
organization proposed by Montgomery et al. (2006), Nguyen et al. (2008), and Shin
and Smith (2008).

1.2.3 Outline

The outline of the remainder of this paper is as follows. Section 2 provides an overview25

of the coordinate system and the Lagrangian methods used in this 3-D study. In Sect. 3,
the meteorological model from which the velocity data are calculated is described,
along with numerical details regarding trajectory calculations. The reader interested

10



ACPD
11, 1–44, 2011

Lagrangian coherent
structures in tropical

cyclone
intensification

B. Rutherford et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

! "

! "

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

primarily in the key findings may skip to Sect. 4 where the main results are presented.
The structures revealed by the Lagrangian fields indicate two primary roles of LCSs:
the modulation of rotating deep moist convection by stirring θe along organized attract-
ing boundaries; and the organization of cyclonic vertical vorticity above the boundary
layer, which is stretched along coherent structure boundaries in the boundary layer to5

form the primary eyewall. We conclude, in Sect. 5, with further remarks on the relation
between Lagrangian coherent structures and VHTs, and provide an outlook on future
studies stimulated by the results of this paper.

2 Mathematical preliminaries

We denote all vector quantities using boldface, and all matrices in capitalized regular10

font. An asterik refers to a transposed vector or matrix.
The Lagrangian trajectory based approaches in previous studies (Haller and Yuan,

2000; Haller, 2002; Shadden et al., 2005; Rutherford and Dangelmayr, 2010) utilize
particle trajectories x(t), which evolve according to the flow map after time T ,

x(t0)→ x(t0,t0+T ). (1)15

The methods detect LCSs by measuring Lagrangian stretching along trajectories
through the linearized growth of perturbations, which grow according to the variational
equation

ξ̇ =∇u(x(t),t)ξ, (2)

where u(x,t) is, in this paper, a 3-D velocity field as in Rutherford and Dangelmayr20

(2010). Finite-time Lyapunov exponents (FTLE’s) and similar metrics measure the lin-
earized growth as the separation of nearby trajectories, and provide scalar fields which
show LCSs corresponding to stable and unstable manifolds as ridges. Computing the
FTLE forward (T > 0) and backward (T < 0) in time allows detection of forward time
repelling and attracting material lines, respectively.25

11
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While FTLE’s are an efficient measure of trajectory separation, they do not differen-
tiate between hyperbolicity and shear. The study of LCSs in sheared flow for a 2-D
nondivergent barotropic vortex (Rutherford et al., 2010b) showed that FTLE’s were not
well suited when the radial velocity terms were dominated by the radial derivative of
angular velocity ∂ω/∂r . For the experiment used in this study, there is sufficient radial5

flow so that FTLE’s are a suitable diagnostic in some cases. In regions with strong hor-
izontal shear, the orthogonal growth rate of small perturbations caused by persistent
strain can still be isolated by solutions of (2) as discussed in the following.

The Lagrangian velocity direction is given by the unit tangent vector

t=
u
|u|

, (3)10

evaluated along trajectories. A moving frame of reference for (2) is introduced along a
trajectory by setting

ξ = T (x(t),t)η, (4)

where the columns of T are the orthogonal unit vectors t,n,b,

T (x,t)= [t(x,t),n(x,t),b(x,t)]. (5)15

The transformed system for η has the form

η̇= [A(x(t),t)+B(x(t),t)]η, (6)

where

A(x,t)= T ∗(∇u)T −T ∗(Txẋ) (7)

with20

Txẋ=
[
(∇u)t− [t∗(∇u)t]t,(∇n)u,(∇b)u

]
,

12



ACPD
11, 1–44, 2011

Lagrangian coherent
structures in tropical

cyclone
intensification

B. Rutherford et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

! "

! "

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

and B(x,t) =−[b1,T
∗nt,T

∗bt] with b1 = (1/|u|)[0,n∗ut,b
∗ut]

∗ contains all terms of the
transformed matrix that depend on the time derivatives of u,n,b (indicated by the sub-
script t), thus B vanishes in the case of steady velocity fields,

η̇=A(x(t),t)η. (8)

As in previous studies (Rutherford and Dangelmayr, 2010; Rutherford et al., 2010b),5

we assume that the time-variation of fluid velocities along trajectories is small and can
be neglected for short integration times. Thus we use Eq. (8) to approximate finite-time
solutions of the transformed variational system. Combining the two terms of which A is
composed in Eq. (7) yields A= [a1,T

∗a2,T
∗a3], where

a1 = [t∗(∇u)t,0,0]∗,10

a2 = (∇u)n− (∇n)u,
a3 = (∇u)b− (∇b)u.

2.1 Transformation to upper triangular form and solution of the variational
system

In contrast to the 2-D case of Rutherford et al. (2010b), the matrix A is not upper tri-15

angular. To obtain upper triangular form we apply a time-dependent orthogonal trans-
formation in the normal plane. The normal plane component, η⊥ = (η2,η3)∗, satisfies
η̇⊥ =A⊥η with

A⊥ =
(
A22 A23
A32 A33

)
. (9)

Let φ(t) be a solution to the differential equation20

φ̇=
1
2

(A33−A22)sin2φ+A23sin2φ−A32cos2φ, (10)

13
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and R(φ) the rotation matrix

R(φ)=
(

cosφ sinφ
−sinφ cosφ

)
. (11)

The transformation η⊥ =R(φ(t))η̃⊥ transforms the normal plane system to

˙̃η
⊥
= Ã⊥η̃⊥, (12)

where Ã⊥ is upper triangular. Thus, dropping the tilde, we may assume that A in Eq. (8)5

has the form

A(x(t),t)=




A11 A12 A13
0 A22 A23
0 0 A33



, (13)

and the transformed variational system can be solved by direct integration. The fun-
damental matrix whose columns are linearly independent solutions for the system (8)
with A given by Eq. (13) is found by direct integration as10

Ψ(t,t0)=




Ψ11(t,t0) Ψ12(t,t0) Ψ13(t,t0)

0 Ψ22(t,t0) Ψ23(t,t0)
0 0 Ψ33(t,t0)



, (14)

where the diagonal elements can be written as

Ψi i (t,t0)= exp
(∫ t

t0
Aii (τ)dτ

)
,

14
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and the off-diagonal elements as

Ψ12 =
∫t
t0

exp
(∫t

sA11(τ)dτ
)

exp
(∫s

t0
A22(τ)dτ

)
A12(s)ds,

Ψ23 =
∫t
t0

exp
(∫t

sA22(τ)dτ
)

exp
(∫s

t0
A33(τ)dτ

)
A23(s)ds,

Ψ13 =
∫t
t0

exp
(∫t

sA11(τ)τ
)[

Ψ23(s,t0)A12(s)

+exp
(∫s

t0
A33(τ)dτ

)
A13(s)

]
ds.

(15)

For a 3-D hurricane flow, the particle motion in the eyewall can be described as helical,
with rotational and vertical components.

Horizontally aligned normal vector5

Numerical implementation of the TNB coordinate frame can be simplified by choosing
n to be the outward normal vector

n=u⊥
h/|uh|, (16)

where uh = (u,v,0)∗ is the horizontal component of the velocity, and u⊥
h = (−v,u,0)∗. In

this case the binormal is given by10

b=
1

|u||uh|
(
−uw,−vw,|uh|2

)∗, (17)

and the entries Aij with i >1 in (13) become

A12 =
1

|u||uh|

{
(u2−v2)(uy +vx)+2uv(vy −ux)

15
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+uw(vz+wy )−vw(uz+wx)
}
,

A13 =
1

|u|2|uh|

{
(|uh|2−w2)

(
v(vz+wy )

+u(uz+wx)
)
−2w(u2ux+v2vy )

−2uvw(uy +vx)
}
,

A22 =
1

|uh|2
{
u2vy +v2ux−uv(uy +vx)

}
,5

A23 =
|u|

(
uvz−vuz

)

|uh|2
,

A32 =
1

|u||uh|2
{

2w
(
v2vx−u2uy +

uv(ux−vy )
)
+w2(vuz−uvz)

+|uh|2
(
uwy −vwx+w(uy −vx)

)}
,

A33 =
1

|u|2|uh|2
{
w2(u2ux+v2vy +uv(uy +vx)

)
10

−|uh|2w
(
u(uz+wx)+v(vz+wy )

)

+|uh|4wz

}
.

For further mathematical details we refer to Rutherford and Dangelmayr (2010).

16
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3 Model description and numerical implementation of Lagrangian fields

3.1 Setup

The model used to generate data for this study is the fifth generation Penn State/NCAR
mesoscale model (MM5), Grell et al. (1995) and Dudhia (1993). The model run is a
fully 3-D nonhydrostatic simulation of an idealized tropical cyclone on an f-plane. The5

model employs a bulk aerodynamic scheme for representing the fluxes of sensible heat,
moisture, and momentum between the atmosphere and the ocean. The model calcu-
lations were initialized using a convectively neutral environment and an axisymmetric
warm-core, cloud-free vortex with a maximum surface tangential velocity of 15 m s−1 at
a radius of 135 km (Nguyen et al., 2008). The intensification of the vortex is highlighted10

in Fig. 1 by plotting the local maximum of horizontal wind speed as a function of time.
The exact model data used in this study is taken from experiment 12 of Montgomery
et al. (2009). The wind-speed dependence of the heat and moisture fluxes from the
underlying ocean surface is retained in this experiment. Though the initial condition
is axisymmetric, asymmetries develop quickly around 8 h in the form of near-columnar15

convective structures posessing strong cyclonic vorticity in their cores. As discussed
in the Introduction, these structures are called VHTs. As the vortex intensifies, the
number of VHTs progressively decreases as the vortex attains maturity. By the end of
the rapid intensification period (approximately 60 h and onwards), no more than three
VHTs are active around the circulation centre (not shown). In the mature phase, the20

evolution of the vortex core is characterized by an approximately axisymmetric circula-
tion superimposed on which are small, but finite-amplitude vortex Rossby waves that
propagate azimuthally, radially, and vertically on the mean potential vorticity gradient
of the system-scale vortex (Bui et al., 2009), coupled to the to the boundary layer and
convection (Wang, 2000; Chen and Yau, 2003; Smith et al., 2008). In this study we25

examine fields from times of t= 0 to 50 h during the main intensification phase.
The model run used in this study utilized four nested grids, and 3-D velocity data

is taken only on the innermost 300 km square grid with x−y grid spacing of 1.67 km.
17
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Vertical coordinates are given on σ−levels, and vary in time, with an output time-step of
2 min. Trajectory integrations are performed using a fourth order Runge-Kutta scheme,
on grids of evenly spaced points in a box of size 220 km by 220 km by 16 km in x, y ,
and z respectively, with horizontal grid-spacing of 1 km, and vertical grid-spacing of
250 m.5

3.2 Time and length scales

The relationship between the time and length scales of VHTs and those of the LCSs
near them drive our choice of integration time for the LCSs. A longer integration time re-
solves and lengthens LCSs. However, spurious structures and excessive filamentation
may emerge for long integration times due to the time-dependence. A short integration10

time will not resolve as many LCSs, but will not show spurious structures and requires
less computation time. Since the representative lifetime of a VHT is 1 h, we have cho-
sen T = 1 h as the primary integration time. This choice limits mergers or splitting of the
LCSs as the VHTs die, yet is still sufficiently long to reveal LCSs that span between the
VHTs, including LCSs which are associated with vortical remnants and have a lifespan15

on the order of 10 hours. Our approach to understand time-dependent stirring is to
consider LCSs which are well resolved under a short integration time and coherent
across varying initial times. We note that the width of LCSs are often less than the
width of the x−y grid spacing, which shows that the existence of LCSs are depen-
dent on model resolution. In fact, smaller trajectory grid-spacing yields finitely many20

additional LCSs which are at sub model grid-scale, while retaining the primary LCSs
detected by coarser trajectory grids.

The initial time, t0, is varied between 5 and 50 h, which captures the model time inter-
val in which VHTs organize vorticity into a symmetric ring-like structure. The convention
for Lagrangian fields is to define the Lagrangian field at the initial time of integration, t,25

since they are integrated quantities and incorporate velocities from the interval (t,t+T ).
The Lagrangian fields at time t are compared to Eulerian fields at a fixed time t, so t

18
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refers to both initial time of the Lagrangian fields and model output time of Eulerian
fields.

During the evolution from 5 h to 50 h, the number of VHTs decrease as the storm
intensifies, with the maximal tangential wind speed increasing from 15 m s−1 at 5 h to
over 60 m s−1 at 50 h. The asymmetric stage begins at 8 h with modestly high θe in5

an 80 km ring (Fig. 2c), which, in conjunction with the frictional convergence in the
boundary layer, induces convective instability and the formation of VHTs beginning
just before 10 h coincident with the first sharp rise in intensity (Fig. 1). As the VHTs
interact they comprise the bulk of the system scale radial gradient of latent heating.
This heating gradient leads to a radial influx of vertical vorticity and θe acquired through10

the air-sea interaction process. An eye-like feature forms at approximately 40 h, Fig. 2e,
with a ring of maximal cyclonic vorticity evident near 40 km radius and the highest θe
located interior to this radius at approximately 30–35 km.

Recent work (Nguyen et al., 2010; Montgomery et al., 2009) indicates that the local-
ized effects of the VHTs are (i) stirring of θe in the boundary layer, (ii) the consumption15

of convective available potential energy (Holton 2004) and restoration of convective
stability, and (iii) the stirring of vorticity in the local environment. The convective com-
ponent of a VHT subsides when either (i) the VHT has consumed all of the convective
available potential energy in its immediate vicinity, and or (ii) vertical shear differentially
advects the columnar structure disrupting the lifecycle.20

In the next section, we will adopt the Lagrangian perspective by examining how LCSs
influence the localized transport of vorticity and θe. LCSs will be shown to contribute
to the fluid dynamics by (i) convergence in the boundary layer and inward movement
of θe, (ii) turbulent updrafts due to the transport of heightened θe anomalies out of the
boundary layer, and (iii) preferential location of vortical remnants above the boundary25

layer dictated by the presence of coherent structures which protect the vortices from
regions of high strain. The LCSs’ influence on the vortices continues with (iv) inward
convergence of vorticity along attracting boundaries which leads to the formation of a
primary eyewall.

19
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3.3 LCSs

3.3.1 Lagrangian field computations

LCSs can be seen as maximal ridges of fixed-time Lagrangian scalar fields, and can be
tracked over varying initial times. Attracting LCSs are found mainly along the bound-
aries of regions with high θe. Repelling LCSs guide VHTs toward the center of the5

LCS, and tend to preserve the VHT without stretching it. The FTLE field is computed
on a trajectory grid, and due to the small vertical to horizontal aspect ratio of the model
output domain, the inclusion of the vertical component in the computation of FTLE’s
reduces the resolution of ridges under a fixed integration time. By eliminating the verti-
cal separation, the “planar” FTLE field is computed from the horizontal separation of a10

horizontal grid of trajectories which are allowed 3-D motion, and resolves ridges much
faster than the 3-D FTLE field. Horizontal shear is computed as in Rutherford and Dan-
gelmayr (2010) by the angle of rotation of the η2 variable onto the η1 variable subspace
defined by arctanϕ=Ψ12/Ψ22, with values of ϕ near π/2 showing maximal shear.

3.3.2 Fixed-time Lagrangian fields15

Though Lagrangian values are defined along any trajectory, and fields are computed
on 3-D grids, we show the Lagrangian fields on z-levels for ease of visualization of the
LCSs. To illustrate the spatial forms of these structures, we show in Figure 3 the planar
FTLE, Ψ22, and ϕ fields at z= 1 km and 10 h, along with zooms highlighting a particular
structure to compare the Lagrangian fields. The FTLE maxima occur at any point of20

high separation, including shear lines surrounding vortices and hyperbolic lines, while
the Ψ22 field isolates hyperbolic separation. We note that Ψ22 ridges are generally in
regions of low shear between VHTs and do not enclose VHTs. We specifically refer
to these LCSs as Ψ-LCSs to distinguish them from LCSs that are associated with
FTLE’s. The particular structure highlighted in the closeup views shows that the FTLE25

ridge encloses two rings of vorticity, and contains the connecting region between them.
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The VHTs are in regions of high shear, so the FTLE ridge surrounding them does not
have hyperbolic stability.

To relate the LCSs to vorticity and θe in both forward and backward time, the ridges of
the Lagrangian fields are approximated by contours and are overlaid along with vorticity
contours on θe fields. We show LCSs which are ridges that have Lagrangian values of5

over 80 % of the maximum Lagrangian values.

4 Lagrangian fields

4.1 Temporal evolution

The lifespan of most LCSs is approximately the same as the 1 h lifetime of VHTs since
the merger or disappearance of VHTs alters the saddle-type geometry of the LCS and10

causes them to merge or split. Additionally, single LCSs between vortices may appear,
disappear, or change stability type. Appearance or disappearance of an LCS generally
occurs on the same time scale as VHTs, and is related to the merger of a pair of VHTs
or the death of a VHT, and are not coincident with organized stirring. However, orga-
nization by the splitting and merger of LCSs or change in stability of a LCS may allow15

LCSs to overcome the high time-dependence and persist for much longer than 1 hour.
The change in stability of an LCS may be impacted also by the existence of differen-
tial rotation associated with the horizontal swirling flow, Rutherford et al. (2010b). The
difference in radial velocity between VHTs may prohibit the hyperbolic stability of the
LCSs. Since LCSs that exist for short times are related to a single VHT, we primarily20

consider LCSs which last longer than the typical VHT.

4.2 Convection and vertical structure

Because of the rotation, convective vortices exhibit vertical coherence of Lagrangian
fields as well as vorticity and θe. In Fig. 4, we show an example of Lagrangian fields and
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vorticity overlaid on θe at levels of 40 m, 1 km, 4 km, and 7 km. Many pools of vorticity
can be seen extending from the sea surface to heights of 7 km and higher, showing
the vertical coherence associated with vortex tube stretching in a rotating environment.
The pools of high θe are in similar planar locations as the vortices from the sea-surface
to 4 km height, and to 7 km height in the smaller radius VHTs.5

The local in, up and out trajectory motion associated with VHTs during a forward
time integration adds uncertainty to the planar projection of the particles’ final loca-
tions. Consequently, the deep convection associated with VHTs is typically seen in
the FTLE field by a “tangle” of repelling LCSs, Fig. 4 (in red). The signature of deep
convection in low-level FTLE fields can be seen by comparing the FTLE-fields at 1 km10

in Fig. 4b with the θe fields at 7 km in Fig. 4d. The figures show that θe at upper levels
is coincident with high FTLE values at low levels. Moreover, the most intense con-
vection is coincident with greater vertical coherence of the tangle, which suggests that
trajectories remain entrained through convection. As an example, we show two specific
vortices with different vertical characteristics marked A and B in Fig. 4. Vortex A has15

vertically coherent LCSs and is convectively active to 7 km. Vortex B has no LCSs at
4 km, and the coherence of vorticity and θe does not reach 4 km.

4.3 Azimuthal average

As a preliminary step in comparing the Lagrangian quantities, we show the radius-time
portrayal of several diagnostics in Figure 2. The evolution of azimuthally averaged20

Lagrangian fields (FTLEs and Ψ22) indicate that higher Lagrangian values are broadly
coincident both radially and temporally with higher wind speeds, and higher θe. While
the distribution of wind speed maxima is radially diffuse, the Lagrangian maxima are
more localized. The radial location of Ψ22 maxima, are near the inner core vortex
edge where vorticity is maximized, Fig. 2e and f, while FTLEs are large throughout the25

region of high radial shear, Fig. 2d. While vorticity mixes toward the origin, Ψ22 does
not, as it is associated with the eyewall boundary. Comparing the vorticity fields and
Ψ22 fields, (Fig. 5c and d), shows that while the maxima occur at similar radii, they
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generally occur at different azimuths. As will be discussed in Sect. 4.6, the Ψ22 ridges
will be suggested to be important for the merging of vortical remnants, and they tend
to occur inside the radius of maximal tangential winds, even during the intensification
phase, consistent with the findings of Rutherford and Dangelmayr (2010).

4.4 Vortex flow geometry5

To help understand the movement and interaction of intense vortices in a turbulent flow,
we present conceptual models to illustrate the planar geometry of a vortex or pair of
vortices in relation to a nearby saddle point in Fig. 6.

4.4.1 Convergent vortex

Convection at the center of VHTs allows a 2-D conceptual representation of the 3-D10

vortex geometry by projecting the helical trajectories onto a 2-D slice, which is a con-
vergent vortex or stable spiral. A convergent vortex in a 2-D slice near a saddle point
exhibits the flow geometry shown in Fig. 6a, where a branch of the unstable manifold
of the saddle spirals toward the center of the vortex. Material entering the vortex trav-
els toward and then along the unstable manifold toward the vortex center. Despite the15

time-dependent nature of VHTs, the geometry may be preserved or partially preserved
for finite times in the Lagrangian frame.

4.4.2 Vortex interactions

Vortex interaction occurs across all spatial scales during intensification, from dipoles
of small VHTs with length scales of less than 10 km to the interaction of broad system-20

scale vortices. Kinematically, two convergent vortices are associated with a single sad-
dle when the vortices are formed by separate unstable manifold branches of the saddle
trajectory, with the manifolds enclosing the vortices in a figure-eight pattern, Fig. 6b. If
the flow was slowly time-dependent the vortices would interact through the mechanism
of lobe dynamics described by Ide et al. (2002). For a highly time-dependent flow, the25
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vortices still interact, but the interaction is dependent on the manifold geometry, the
time-dependence, and the relative time-scales of the stable and unstable directions of
the saddle. Time-dependence limits the lengths and existence times of LCSs, and does
not allow the figure-eight pattern to completely form. The relative time-scales of stable
and unstable processes have not been considered in other studies to our knowledge,5

but these time scales form the basis for a classification of finite-time vortex interac-
tions. Here we classify the interaction of cyclonic vortices (VHTs or their remnants)
into stable, unstable, or complete interaction based on the stability of LCSs between
them.

Stable interaction10

Stable vortex interaction as depicted in Fig. 6c occurs when the influence of the re-
pelling LCS is greater than that of the attracting LCS. This situation is most often
observed with vortical remnants of VHTs and Ψ-LCSs. A repelling Ψ-LCS appears
between adjacent vortices while an attracting LCS does not appear. The flow direction
for cyclonic vortices associated with the system-scale circulation dictates the connec-15

tion of the LCS to be radially inward of the leading vortex and radially outward of the
trailing vortex. The vortices move toward the center of the LCS, but do not mix since
they remain separated by the LCS. Because of the general in, up and out circulation
driven by the aggregate heating of the VHTs, the vortices at low-levels have a tendency
to move radially inward in the absence of flow boundaries, and often merge after the20

LCS vanishes.

Unstable interaction

Unstable vortex interaction as depicted in Fig. 6d is the basic type of interaction for
convergent vortices along attracting LCSs, which tend to horizontally stretch VHTs or
their remnants. The formation of an attracting LCS between two adjacent VHTs forces25

the orientation to be opposite the case for stable vortex interaction. As the vortices are
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attracted to the LCS, the vortex tends to be stretched toward the tail, forming vorticity
strips. Unstable vortex interaction generally occurs on a time-scale similar to the VHT
lifetime.

Hyperbolic noninteraction

Hyperbolic vortex noninteraction occurs over short times when both attracting and re-5

pelling LCSs are resolved between vortices. Since high time-dependence limits the
length of the LCSs, the hyperbolic vortex noninteraction does not induce lobe dynam-
ics, and lasts for at most a few hours. Vortices which remain separated by the LCSs
can be drawn arbitrarily close without merging, in contrast to the results of Melander et
al. (1988) for freely decaying turbulence.10

An illustrative example of vortex interaction

A case of interacting vortices can be seen in Fig. 7 during the time period from 29 h
to 31 h. At 29 h, there are initially 3 prominent vorticity pools in the lower troposphere,
labelled A, B, and C in Fig. 8a which form part of a pentagonal structure. A saddle point
located between vortex A and vortex B creates a separatrix which divides the vortices,15

as in Fig. 7b. Over the next hour, all the vorticity pools and LCSs travel together, and at
30.4 h, vortices A and B come very close, yet remain separated by the attracting LCS.
The relationship between vortex B and vortex C is different, however, since they are
separated by a single LCS (e.g., Fig. 7d) instead of a complete separatrix. Vortices B
and C are not connected at 29 h, but a repelling LCS creates a separatrix by 29.8 h.20

These latter two vortices travel along the LCS and then merge just after 31 h, as the
vortex C absorbs vortex B.

4.5 Stirring of θe in the boundary layer

Having examined the interaction of intense vortices, we now consider the enhancement
and distribution of the source of fuel for the vortices. Surface fluxes of moisture increase25
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θe at the bottom of the boundary layer, and θe is drawn inward by the convergent
circulation. In the absence of the import of dry air from aloft, θe increases on inflow
trajectories. Alongside the system-scale convergence, the LCSs reveal preferential
locations for the convergence of θe near the sea-surface, which subsequently leads to
localized convection.5

The evolution of boundary layer θe can be seen in Figs. 8 and 9 by time snapshots
at 2 h intervals of θe along with vorticity contours and attracting and repelling coherent
structures at the lowest model output of 40 m. A ring of high θe near the VHT locations
is transformed to a pool of high θe in the center. At the same time, low θe from the
center diminishes as it is either expelled outward or enhanced by moisture fluxes in re-10

gions of air-sea disequilibrium. While θe values increase radially inward, specific focal
points of high θe are horizontally constrained by the LCSs, which primarily occur along
θe gradients. Specific boundaries and θe pools can be tracked over the time interval
shown. Many of the LCSs which at 20 h bound dry air in the center are still present at
30 h. These LCSs can be tracked over the time interval and, after reorganization, are15

still present at 30 h as a boundary to protect elevated θe air near the vortex center.

4.6 Organization of vortical remnants above the boundary layer

The boundary layer does not give a complete view of vortex interaction, since there are
no hyperbolic repelling LCSs due to the strong convergence there. However, above the
boundary layer, these structures are combined with attracting LCSs to form the bound-20

aries that control vortex interaction there. We now examine the temporal evolution of
the LCSs during the time period from 20–30 h at the top of the boundary layer. We
see that while the VHTs and θe anomalies that support them create an environment
of turbulent convection, the LCSs show an organized view of the inward transport of
vortical remnants. Regions of “organized” mixing form LCSs which are longer lasting25

than other LCSs or individual VHTs.
These LCSs are associated with vortical remnants thatremain intact for much longer

than the normal 1 h lifetime of a VHT, and grow to diameters of 30 km. These vortices
26
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are involved in many organized mergers as described in Sect. 4.2 along persistent
Ψ-LCSs.

In contrast, the turbulent regime shows strong filamentation, marked by numerous
short, intertwined FTLE ridges. However, there are few repelling Ψ-LCSs. Turbulent
regions have vortices with the strongest convection. The LCSs in turbulent regions are5

generally not coherent for longer than 1 h, and the VHTs in turbulent regions do not
leave behind persistent remnants.

4.7 Evolution of preferred remnants

The roles of FTLE and Ψ22 fields above the boundary layer are contrasted by showing
the evolution of FTLEs in Fig. 10 with the Ψ22 ridges in Fig. 11. Organized and turbulent10

regimes as defined above are approximately outlined by boxes, and labeled O and T
respectively. At 20 h, there are two primary vortical remnants, seen as yellow circles,
residing in O1 and O2. Both the vortical remnants and the Ψ-LCSs found at 20 h
can be tracked and are still present at 30 h. The Ψ-LCSs travel with the vortices and
separate them from turbulence. Many turbulent regions can be seen by repelling FTLE15

tangles in Fig. 10. These regions either split or merge, but do not leave behind vortical
remnants.

4.8 Formation of primary eyewall

By 30 h, the turbulence above the boundary layer has decreased, and some repelling
Ψ-LCSs emerge at the bottom of the boundary layer. The primary structures associ-20

ated with O1 and O2 at 30 h are shown in Fig. 12a at z= 40 m. The vortical remnants
are called V1 and V2, and the LCSs are labeled AL1, AL2, and RL1. AL1 and AL2 are
attracting while RL1 is repelling. These particular vortical remnants are the primary
vortices that are stretched into a ring of vorticity, while the Ψ-LCSs form the primary
eyewall.25
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The evolution of the primary structures can be seen in Figu. 12b–d at 35 h, 40 h, and
45 h, respectively. AL1 and RL1 remain with V1 until 40 h, and prohibit the merger of V1
with other vortices. V1 is eventually stretched and becomes part of the primary eyewall
by 45 h, after RL1 disappears. V2 is accompanied by AL2, and has no repelling LCS at
30 h. Over the next 15 h, AL2 stretches V2, and is a focal point for the attraction of high5

θe. As V2 stretches, it maintains high θe and forms the primary ring of vorticity at 45 h.
AL2 stretches alongside V2, and forms the Lagrangian eyewall by 41 h, 4 h before the
ring of vorticity is enclosed.

5 Conclusions

Using 3-D Lagrangian fields, we have examined 3-D structural aspects of tropical cy-10

clone intensification using an idealized numerical experiment from prior work. Though
the vertical motion associated with convection within VHTs provides a challenging set-
ting for understanding mixing, the LCSs from our kinematically derived fields are able
to isolate the individual VHT contributions. A series of conceptual models for binary
vortex interaction in a planar flow help illustrate the role of LCSs near vortices, and15

the interaction described in the models is shown to persist and can be tracked through
turbulent flow. Turbulent and organized flow regimes provided a comparison of the LCS
structure near convectively active VHTs versus the persistent vortical remnants. The
LCSs were shown to complement the system-scale inflow of the boundary layer by
highlighting pathways for the stirring of θe and vorticity along attracting LCSs. Above20

the boundary layer, where the mean inflow is not as dominant, repelling LCSs emerged
in conjunction with attracting LCSs to form pathways for stirring the vortical remnants
and boundaries to protect them from the resolved turbulence. The LCSs showed ver-
tical coherence along with the vortices, and convection was marked by a tangle of
repelling LCSs. The influence of the localized LCSs concludes with the formation of25

the primary eyewall, as the preferred vortical remnants and the LCSs which travel with
them are stretched into a ring of vorticity and an enclosed attracting LCS.
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Though this study has been conducted using model data calculated from an idealized
initialization which represents one member of an ensemble, our 3-D Lagrangian meth-
ods resulted in 3-D continuous LCSs persisting over varying initial time, and should
provide similar results for any of the ensemble members associated with small per-
turbations in boundary layer moisture as described in Nguyen et al. (2008). The La-5

grangian methods used in this study are applicable to a variety of time-dependent
vortex flows from small scale turbulence to the system-scale circulation. Vortex be-
havior on these differing spatial scales can be studied by changing the integration time
of the Lagrangian fields. These methods may uncover important localized aspects of
transport that have been unattainable by other methods such as eddy statistics. Inves-10

tigation of the role of Lagrangian coherent structures during hurricane genesis will be
the goal of a future study.
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6 Rutherford Et Al.: Lagrangian Coherent Structures in tropical cyclone intensification

where uh = (u,v,0)∗ is the horizontal component of the ve-
locity, and u⊥

h = (−v,u,0)∗. In this case the binormal is
given by

b=
1

|u||uh|

(
−uw,−vw,|uh|

2
)∗

, (17)

and the entries Aij with i> 1 in (13) become

A12 =
1

|u||uh|

{
(u2−v2)(uy +vx)+2uv(vy −ux)

+uw(vz +wy)−vw(uz +wx)
}

,

A13 =
1

|u|2|uh|

{
(|uh|

2−w2)
(
v(vz +wy)

+u(uz +wx)
)
−2w(u2ux +v2vy)

−2uvw(uy +vx)
}

,

A22 =
1

|uh|2

{
u2vy +v2ux−uv(uy +vx)

}
,

A23 =
|u|

(
uvz −vuz

)

|uh|2
,

A32 =
1

|u||uh|2

{
2w

(
v2vx−u2uy +

uv(ux−vy)
)
+w2(vuz −uvz)

+|uh|
2
(
uwy −vwx +w(uy −vx)

)}
,

A33 =
1

|u|2|uh|2

{
w2

(
u2ux +v2vy +uv(uy +vx)

)

−|uh|
2w

(
u(uz +wx)+v(vz +wy)

)

+|uh|
4wz

}
.

For further mathematical details we refer to Rutherford and
Dangelmayr (2010).

3 Model description and numerical implementation of
Lagrangian fields.

Setup

The model used to generate data for this study is the fifth gen-
eration Penn State/NCAR mesoscale model (MM5), Grell et
al. (1995) and Dudhia (1993). The model run is a fully
3D nonhydrostatic simulation of an idealized tropical cy-
clone on an f-plane. The model employs a bulk aerodynamic
scheme for representing the fluxes of sensible heat, moisture,
and momentum between the atmosphere and the ocean. The
model calculations were initialized using a convectively neu-
tral environment and an axisymmetric warm-core, cloud-free
vortex with a maximum surface tangential velocity of 15 m/s
at a radius of 135 km (Nguyen et al. , 2008). The intensifica-
tion of the vortex is highlighted in Figure 1 by plotting the lo-
cal maximum of horizontal wind speed as a function of time.

0 10 20 30 40 50 60
10

20
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60

70

80

t (hours)

V tm
ax

Fig. 1. Intensification of the simulated vortex is shown by the local
maximum of horizontal wind speed Vtmax as a function of time
from t=0 to t=60 hours.

The exact model data used in this study is taken from ex-
periment 12 of Montgomery et al. (2009). The wind-speed
dependence of the heat and moisture fluxes from the under-
lying ocean surface is retained in this experiment. Though
the initial condition is axisymmetric, asymmetries develop
quickly around 8 hours in the form of near-columnar con-
vective structures posessing strong cyclonic vorticity in their
cores. As discussed in the Introduction, these structures are
called VHTs. As the vortex intensifies, the number of VHTs
progressively decreases as the vortex attains maturity. By the
end of the rapid intensification period (approximately 60 h
and onwards), no more than three VHTs are active around
the circulation centre (not shown). In the mature phase, the
evolution of the vortex core is characterized by an approxi-
mately axisymmetric circulation superimposed on which are
small, but finite-amplitude vortex Rossby waves that propa-
gate azimuthally, radially, and vertically on the mean poten-
tial vorticity gradient of the system-scale vortex (Bui et al. ,
2009), coupled to the to the boundary layer and convection
(Wang , 2000; Chen and Yau , 2003; Smith et al. , 2008). In
this study we examine fields from times of t=0 to 50 hours
during the main intensification phase.

The model run used in this study utilized four nested grids,
and 3D velocity data is taken only on the innermost 300 km
square grid with x−y grid spacing of 1.67 km. Vertical coor-
dinates are given on σ−levels, and vary in time, with an out-
put time-step of 2 min. Trajectory integrations are performed
using a fourth order Runge-Kutta scheme, on grids of evenly
spaced points in a box of size 220 km by 220 km by 16 km
in x, y, and z respectively, with horizontal grid-spacing of 1
km, and vertical grid-spacing of 250 m.

Time and length scales

The relationship between the time and length scales of VHTs
and those of the LCSs near them drive our choice of integra-

Fig. 1. Intensification of the simulated vortex is shown by the local maximum of horizontal wind
speed Vtmax as a function of time from t= 0 to t= 60 h.
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Fig. 2. Hovmoller plots (radial profile versus time) of azimuthally averaged Vtan,max (a), Vtan,mean (b), θe (c), FTLE’s (d), ζ (e), and Ψ22

(f). The Vtan,mean, FTLE, Ψ22, θe, and ζ values are averaged over the z=40 m horizontal plane, while Vtan,max is a maximum over all
heights and azimuths at each radius.Fig. 2. Hovmoller plots (radial profile versus time) of azimuthally averaged Vtan,max (a),

Vtan,mean (b), θe (c), FTLE’s (d), ζ (e), and Ψ22 (f). The Vtan,mean, FTLE, Ψ22, θe, and ζ values
are averaged over the z = 40 m horizontal plane, while Vtan,max is a maximum over all heights
and azimuths at each radius.
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Fig. 3. Planar FTLE, Ψ22, and ϕ fields in (a), (c), and (e) respectively, at initial time of 10 hours with integration time of 1 hour at 1 km
height. A zoom into a particular structure from the boxes in (a), (c), and (e) are shown in (b), (d), and (f).

Fig. 3. Planar FTLE, Ψ22, and ϕ fields in (a), (c), and (e), respectively, at initial time of 10 h
with integration time of 1 h at 1 km height. A zoom into a particular structure from the boxes in
(a), (c), and (e) are shown in (b), (d), and (f).
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Fig. 4. The vertical structure of the LCSs are shown by attracting Ψ-LCSs (green) and repelling Ψ-LCSs (red), which with vorticity contours
(yellow) are all overlaid on the θe field (black and white shading) at vertical levels of 40 m (a), 1 km, (b), 4 km (c), and 7 km (d).

4.1.2 Vortex interactions

Vortex interaction occurs across all spatial scales during in-
tensification, from dipoles of small VHTs with length scales
of less than 10 km to the interaction of broad system-scale
vortices. Kinematically, two convergent vortices are associ-
ated with a single saddle when the vortices are formed by
separate unstable manifold branches of the saddle trajectory,
with the manifolds enclosing the vortices in a figure-eight
pattern, Figure 6 (b). If the flow was slowly time-dependent
the vortices would interact through the mechanism of lobe
dynamics described by Ide et al. (2002). For a highly
time-dependent flow, the vortices still interact, but the in-
teraction is dependent on the manifold geometry, the time-
dependence, and the relative time-scales of the stable and
unstable directions of the saddle. Time-dependence limits
the lengths and existence times of LCSs, and does not al-
low the figure-eight pattern to completely form. The relative

time-scales of stable and unstable processes have not been
considered in other studies to our knowledge, but these time
scales form the basis for a classification of finite-time vor-
tex interactions. Here we classify the interaction of cyclonic
vortices (VHTs or their remnants) into stable, unstable, or
complete interaction based on the stability of LCSs between
them.

Stable interaction

Stable vortex interaction as depicted in Figure 6 (c) occurs
when the influence of the repelling LCS is greater than that
of the attracting LCS. This situation is most often observed
with vortical remnants of VHTs and Ψ-LCSs. A repelling
Ψ-LCS appears between adjacent vortices while an attract-
ing LCS does not appear. The flow direction for cyclonic
vortices associated with the system-scale circulation dictates
the connection of the LCS to be radially inward of the leading

Fig. 4. The vertical structure of the LCSs are shown by attracting Ψ-LCSs (green) and repelling
Ψ-LCSs (red), which with vorticity contours (yellow) are all overlaid on the θe field (black and
white shading) at vertical levels of 40 m (a), 1 km (b), 4 km (c), and 7 km (d).
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Fig. 5. Horizontal slices of Lagrangian fields and Eulerian diagnostics are compared at 20 hours and 1 km height. The FTLE field (a) has
ridges, which are extracted and overlaid on the θe field (b). The Ψ22 field (c) has ridges, which are extracted and overlaid on the ζ field (d).
Tangential winds and vertical velocity are shown in (e) and (f).Fig. 5. Horizontal slices of Lagrangian fields and Eulerian diagnostics are compared at 20 h

and 1 km height. The FTLE field (a) has ridges, which are extracted and overlaid on the θe field
(b). The Ψ22 field (c) has ridges, which are extracted and overlaid on the ζ field (d). Tangential
winds and vertical velocity are shown in (e) and (f).
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(a) (b)

(c) (d)

Fig. 6. The general saddle point geometry ocurrs when stable and unstable manifolds form a single convergent vortex (a). A pair of
convergent vortices on opposing sides of a saddle are kept from finite-time interaction (b). Stable (c) and unstable (d) vortex interactions
occur along a single manifold segment when the other manifold branch is not obtained under short integration times.

lent regimes as defined above are approximately outlined by
boxes, and labeled O and T respectively. At 20 hours, there
are two primary vortical remnants, seen as yellow circles, re-
siding in O1 and O2. Both the vortical remnants and the Ψ-
LCSs found at 20 hours can be tracked and are still present at
30 hours. The Ψ-LCSs travel with the vortices and separate
them from turbulence. Many turbulent regions can be seen
by repelling FTLE tangles in Figure 10. These regions either
split or merge, but do not leave behind vortical remnants.

4.4 Formation of primary eyewall

By 30 hours, the turbulence above the boundary layer has
decreased, and some repelling Ψ-LCSs emerge at the bottom
of the boundary layer. The primary structures associated with
O1 and O2 at 30 hours are shown in Figure 12 (a) at z=40 m.
The vortical remnants are called V1 and V2, and the LCSs

are labeled AL1, AL2, and RL1. AL1 and AL2 are attracting
while RL1 is repelling. These particular vortical remnants
are the primary vortices that are stretched into a ring of vor-
ticity, while the Ψ-LCSs form the primary eyewall.

The evolution of the primary structures can be seen in Fig-
ure 12 (b)-(d) at 35 hours, 40 hours, and 45 hours, respec-
tively. AL1 and RL1 remain with V1 until 40 hours, and
prohibit the merger of V1 with other vortices. V1 is eventu-
ally stretched and becomes part of the primary eyewall by 45
hours, after RL1 disappears. V2 is accompanied by AL2, and
has no repelling LCS at 30 hours. Over the next 15 hours,
AL2 stretches V2, and is a focal point for the attraction of
high θe. As V2 stretches, it maintains high θe and forms the
primary ring of vorticity at 45 hours. AL2 stretches along-
side V2, and forms the Lagrangian eyewall by 41 hours, 4
hours before the ring of vorticity is enclosed.

Fig. 6. The general saddle point geometry ocurrs when stable and unstable manifolds form
a single convergent vortex (a). A pair of convergent vortices on opposing sides of a saddle
are kept from finite-time interaction (b). Stable (c) and unstable (d) vortex interactions occur
along a single manifold segment when the other manifold branch is not obtained under short
integration times.
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Fig. 7. An example of vortex interaction during the simulated intensification process. The times shown are 29 hours (a), 29.8 hours (b), 30.4
hours (c), and 31 hours (d). The yellow contours outline intense cyclonic vorticity anomalies whose values exceed 3 × 10−3 s−1. Arrows
point to a subset of interacting vortices discussed in Section 4.2. The intense vorticity regions, attracting Ψ-LCSs (green), repelling Ψ-LCSs
(red), and vorticity contours (yellow) are all overlaid on the θe field (black and white shading).

5 Conclusions

Using 3D Lagrangian fields, we have examined 3D structural
aspects of tropical cyclone intensification using an idealized
numerical experiment from prior work. Though the vertical
motion associated with convection within VHTs provides a
challenging setting for understanding mixing, the LCSs from
our kinematically derived fields are able to isolate the indi-
vidual VHT contributions. A series of conceptual models for
binary vortex interaction in a planar flow help illustrate the
role of LCSs near vortices, and the interaction described in
the models is shown to persist and can be tracked through tur-
bulent flow. Turbulent and organized flow regimes provided
a comparison of the LCS structure near convectively active
VHTs versus the persistent vortical remnants. The LCSs
were shown to complement the system-scale inflow of the

boundary layer by highlighting pathways for the stirring of
θe and vorticity along attracting LCSs. Above the boundary
layer, where the mean inflow is not as dominant, repelling
LCSs emerged in conjunction with attracting LCSs to form
pathways for stirring the vortical remnants and boundaries
to protect them from the resolved turbulence. The LCSs
showed vertical coherence along with the vortices, and con-
vection was marked by a tangle of repelling LCSs. The influ-
ence of the localized LCSs concludes with the formation of
the primary eyewall, as the preferred vortical remnants and
the LCSs which travel with them are stretched into a ring of
vorticity and an enclosed attracting LCS.

Though this study has been conducted using model data
calculated from an idealized initialization which represents
one member of an ensemble, our 3D Lagrangian methods re-
sulted in 3D continuous LCSs persisting over varying initial

Fig. 7. An example of vortex interaction during the simulated intensification process. The times
shown are 29 h (a), 29.8 h (b), 30.4 h (c), and 31 h (d). The yellow contours outline intense
cyclonic vorticity anomalies whose values exceed 3× 10−3 s−1. Arrows point to a subset of
interacting vortices discussed in Sect. 4.2. The intense vorticity regions, attracting Ψ-LCSs
(green), repelling Ψ-LCSs (red), and vorticity contours (yellow) are all overlaid on the θe field
(black and white shading).
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Fig. 8. Planar attracting (green) and repelling (red) FTLE ridges and vorticity contours (yellow) are overlaid on θe fields with 1 hour
integration time at times from 20 hours to 30 hours every 2 hours at the bottom of the boundary layer.

Fig. 8. Planar attracting (green) and repelling (red) FTLE ridges and vorticity contours (yellow)
are overlaid on θe fields with 1 h integration time at times from 20 h to 30 h every 2 h at the
bottom of the boundary layer.
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Fig. 9. Attracting (green) and repelling (red)Ψ22 ridges and vorticity contours (yellow) are overlaid on θe fields with 1 hour integration time
at times from 20 hours to 30 hours every 2 hours at the bottom of the boundary layer.

Fig. 9. Attracting (green) and repelling (red) Ψ22 ridges and vorticity contours (yellow) are
overlaid on θe fields with 1 h integration time at times from 20 h to 30 h every 2 h at the bottom
of the boundary layer.
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Fig. 10. Mixing regimes can be seen in labeled boxes containing FTLE LCSs at z=1 km with 1 hour integration time at times from 20 hours
to 30 hours every 2 hours. The attracting LCSs (green), repelling LCSs (red), and vorticity contours (yellow) are all overlaid on the θe field
(black and white shading).Fig. 10. Mixing regimes can be seen in labeled boxes containing FTLE LCSs at z= 1 km with

1 h integration time at times from 20 h to 30 h every 2 h. The attracting LCSs (green), repelling
LCSs (red), and vorticity contours (yellow) are all overlaid on the θe field (black and white
shading).
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Fig. 11. Mixing regimes can be seen in labeled boxes containing Ψ22 LCSs at z=1 km with 1 hour integration time at times from 20 hours
to 30 hours every 2 hours. The attracting Ψ-LCSs (green), repelling Ψ-LCSs (red), and vorticity contours (yellow) are all overlaid on the θe

field (black and white shading).Fig. 11. Mixing regimes can be seen in labeled boxes containing Ψ22 LCSs at z= 1 km with 1 h
integration time at times from 20 h to 30 h every 2 h. The attracting Ψ-LCSs (green), repelling
Ψ-LCSs (red), and vorticity contours (yellow) are all overlaid on the θe field (black and white
shading).
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Fig. 12. The primary Lagrangian structures present during primary eyewall formation at the bottom of the boundary layer as described in
section 4.6 are labeled by arrows and are shown at 30 hours (a), 35 hours (b), 40 hours (c), and 45 hours (d). Attracting Ψ-LCSs (green),
repelling Ψ-LCSs (red), and vorticity contours (yellow) are all overlaid on the θe field (black and white shading).

time, and should provide similar results for any of the ensem-
ble members associated with small perturbations in bound-
ary layer moisture as described in Nguyen et al. (2008).
The Lagrangian methods used in this study are applicable
to a variety of time-dependent vortex flows from small scale
turbulence to the system-scale circulation. Vortex behavior
on these differing spatial scales can be studied by changing
the integration time of the Lagrangian fields. These meth-
ods may uncover important localized aspects of transport that
have been unattainable by other methods such as eddy statis-
tics. Investigation of the role of Lagrangian coherent struc-
tures during hurricane genesis will be the goal of a future
study.
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